Física y Quimica

Premio Nobel de Física 2008

Premios Nobel

 

 

 

 

Fotos y esquemas: Fundación Nobel

Más información:

  nobelprize.org

 

Traducción del inglés   Documento traducido

 

Premio Nobel de Física 2008

 

 

 

Makoto Kobayashi

Toshihide Maskawa

Yoichiro Nambu

Makoto Kobayashi (1944). Japón

Toshihide Maskawa (1940). Japón

"Por el descubrimiento del origen de la ruptura de la simetría que predice la existencia de, al menos, tres familias de quarks en la naturaleza"

Yoichiro Nambu (1921. USA

"Por el descubrimiento del mecanismo de ruptura espontánea de la simetría en física subatómica"

¿Por qué hay algo en vez de nada? ¿Por qué hay tantas partículas elementales diferentes? Los laureados con el Premio Nobel de Física de este año han presentado ideas teóricas que nos suministran una comprensión más profunda de lo que sucede en el interior de los bloques más pequeños que forman la materia.

La naturaleza de las leyes de simetría se encuentran en el corazón de este asunto. O más bien, la ruptura de las simetrías, tanto las que parecen haber existido en nuestro universo desde el principio como aquellas que han perdido su simetría original en alguna parte del camino.

De hecho, todos somos hijos de la simetría rota. Ello debió ocurrir inmediatamente después del Big Bang, hace unos 14.000 millones de años cuando fueron creadas la materia y la antimateria. El contacto de materia y antimateria es fatal para ambas, se aniquilan mutuamente y se transforman en radiación. Es evidente que la materia, al final, ganó la partida a la antimateria, de otra manera nosotros no estaríamos aquí. Pero estamos, y una pequeña desviación de la simetría perfecta parece que ha sido suficiente –un exceso de una partícula de materia por cada diez mil millones de partículas de antimateria fueron suficientes para hacer que nuestro mundo exista-. Este exceso de la materia fue la semilla de nuestro universo, lleno de galaxias, estrellas y planetas y, eventualmente, de vida. Pero lo que hay detrás de esta violación de la simetría en el cosmos es aún un gran misterio y un activo campo de investigación.

La teoría de las partículas elementales considera tres formas básicas de simetría: simetría especular, simetría de carga y simetría temporal (en el lenguaje de la física la simetría especular es denominada P, de paridad; la simetría de carga, C y la simetría temporal,T).

En la simetría especular todos los sucesos ocurren exactamente igual si son observados directamente o reflejados en un espejo. Ello implica que no existe ninguna diferencia entre izquierda y derecha y nadie sería capaz de distinguir su propio mundo de otro reflejado en un espejo. La simetría de carga predice que las partículas cargadas se comportarán exactamente igual que sus antipartículas, las cuales tiene exactamente las mismas propiedades pero carga opuesta. Y de acuerdo con la simetría temporal, las cosas sucederían exactamente igual con independencia de que el tiempo transcurra hacia delante o hacia atrás.

El Modelo Estandar  para las partículas elementales de la materia predice tres familias  (ver diagrama). Estas familias se parecen bastante, pero solamente las partículas de la primera familia (las más ligeras) son lo suficientemente estables para construir el cosmos. Las partículas de las otras familias (más pesadas) son muy inestables y se desintegran rápidamente dando energía y otras partículas.

El Modelo Estandar es una síntesis de todas las ideas que la física de partículas ha generado durante el siglo pasado. Se asienta sobre la base teórica de los principios de simetría de la física cuántica y la teoría de la relatividad y ha resistido a innumerables pruebas. No obstante, varias crisis se sucedieron poniendo en peligro el bien construido edificio del modelo. Estas crisis tuvieron lugar porque los físicos asumían que las leyes de la simetría eran aplicables al micromundo de las partículas elementales. Pero esto no era totalmente  cierto.

La primera sorpresa surgió en 1956 cuando dos físicos teóricos chino-americanos, Tsung Dao Lee y Chen Ning Yang (galardonados con el Premio Nobel al año siguiente, en 1967) comprobaron que la simetría especular (simetría P) era violada por la fuerza  débil.

Una nueva violación de las leyes de la simetría tenía lugar en la desintegración de una extraña partícula llamada kaón (Premio Nobel concedido a James Cronin y Val Fitch en 1980). Una pequeña fracción de los kaones no seguían las leyes de la simetría especular y de carga; se rompía la simetría CP y se desafiaba la estructura misma de la teoría.

La cuestión de por qué se rompe la simetría seguía siendo un misterio hasta 1972, cuando dos jóvenes investigadores de la Universidad de Kyoto: Makoto Kobayashi y Toshihide Maskawa, bien familiarizados con los cálculos de la física cuántica, encontraron la solución en forma de matriz 3x3.

¿Cómo tiene lugar esta doble ruptura de la simetría? Cada kaón consiste en una combinación de quark y antiquark. La fuerza débil hace que ambos intercambien sus identidades continuamente: el quark se transforma en antiquark, mientras que el antiquark se transforma en quark , esto transforma un kaón en un antikaón. De esta manera el kaón “oscila” entre una partícula y una antipartícula. Pero si las condiciones son las adecuadas la simetría entre materia y antimateria se puede romper. La matriz obtenida por Kobayashi y Maskawa describe como se produce la transformación de los quarks.

Como ya se ha explicado el Modelo Estándar comprende todas las partículas elementales conocidas y tres de las cuatro fuerzas fundamentales. Pero, ¿por qué son estas fuerzas tan diferentes?. ¿Y por qué las partículas tienen masas tan diferentes?. La más pesada, el quark top, es más de tres mil cien veces más pesado que el electrón. ¿Por qué tienen todas masa? La fuerza débil destaca en este aspecto una vez más: sus portadores, las partículas Z y W son muy pesadas, mientras que el fotón, que transmite la fuerza electromagnética, carece de masa.

La mayoría de los físicos piensa que el llamado mecanismo de Higgs es el responsable de que la simetría original entre fuerzas fuera destruido dando a las partículas sus masas en las primeras etapas del universo.

El camino hacia ese descubrimiento fue trazado por Yoichiro Nambu quien, en 1960, fue el primero en introducir la violación espontánea de la simetría en la física de partículas. Es por este descubrimiento por el que se le concede el Premio Nobel de Física.

Tenemos algunos ejemplos banales de violación espontánea de la simetría en la vida diaria. Un lápiz en equilibrio sobre su punta lleva una existencia totalmente simétrica en la cual todas las direcciones son equivalentes. Pero esta simetría se pierde cuando cae -ahora sólo una dirección cuenta-. Por otro lado su condición es ahora más estable, el lápiz no puede volver a caer, ha llegado a su nivel más bajo de energía.

El vacío tiene el nivel de energía más bajo posible en el cosmos. En efecto, un vacío en física es precisamente un estado con la menor energía posible. Sin embargo, no está totalmente vacío. Desde la llegada de la física cuántica, el vacío está lleno de una burbujeante sopa de partículas que aparecen e inmediatamente desaparecen en invisibles y ubicuos campos cuánticos. Estamos rodeados por campos cuánticos que se extienden por el espacio; las cuatro fuerzas fundamentales de la naturaleza también son descritas como campos. Uno de ellos, el gravitacional, es conocido por todos nosotros. Es el que nos mantiene pegados a la tierra y determina la dirección arriba-abajo.

Nambu indicó que las propiedades del vacío son de gran interés para el estudio de la rotura espontánea de la simetría. Un vacío, que es el estado más bajo de energía, no se corresponde con el estado de mayor simetría. Tan pronto como el lápiz se cae, la simetría del campo cuántico queda rota y sólo una de las muchas direcciones posibles es elegida. En las últimas décadas los métodos de Nambus para tratar la violación de la simetría espontánea en el Modelo Estandar han sido refinados y son frecuentemente usados hoy para calcular los efectos de la fuerza fuerte.